Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add filters








Year range
1.
Asian Pacific Journal of Tropical Biomedicine ; (12): 580-585, 2018.
Article in Chinese | WPRIM | ID: wpr-950398

ABSTRACT

Objective: To investigate anti-hemolytic, antibacterial and anti-cancer activities of leaf and stem extracts from Polygonum odoratum. Methods: Leaves and stems of Polygonum odoratum were extracted using methanol and their anti-hemolytic activity was assessed using 2, 2′-Azobis (2-methylpropionamidine) dihydrochloride which is known to generate free radical damage on cell membranes of red blood cells. This damage, represented by hemolysis, was measured using spectrophotometry. Antibacterial activity was tested by using a broth microdilution method to find minimal inhibitory concentrations against eight bacterial strains. Anti-cancer activity of the extracts was evaluated against a human promyelocytic leukemic cell line (HL-60) by using MTT assay for cell viability and flow cytometry for apoptosis induction and cell cycle analysis. Results: Both leaf and stem extracts have anti-hemolytic activity. The results showed a significantly increased percentage of inhibition in a concentration-dependent manner. Interestingly, the leaf extract showed anti-hemolytic activity to a greater extent than the stem extract. Antibacterial activity of the extracts, as indicated by their minimal inhibitory concentration, using 12.5, 50, 25, 25 μg/mL, was measured against Staphylococcus epidermidis, Enterococcus faecium, Enterococcus faecalis and Staphylococcus aureus. The leaf extracts also exhibited anti-cancer activity, demonstrated by significantly decreased cell viability of human promyelocytic cells (HL-60), with an IC

2.
Asian Pacific Journal of Tropical Medicine ; (12): S155-61, 2014.
Article in English | WPRIM | ID: wpr-820621

ABSTRACT

OBJECTIVE@#To evaluate efficacy and toxicity of a novel orally active bidentate iron chelator, 1-(N-acetyl-6-aminohexyl)-3-hydroxy-2-methylpyridin-4-one (CM1) in mice under normal and iron overload conditions.@*METHODS@#Wild type C57BL/6 mice were fed with normal and 0.2% (w/w) ferrocene-supplemented (Fe) diets, respectively for 240 d and orally given the CM1 (50, 100 and 200 mg/kg) for 180 d. Blood iron profiles, hematological indices, liver enzymes and histopathology were determined.@*RESULTS@#CM1 treatment lowered plasma levels of labile plasma iron and non-transferrin bound iron, but not ferritin in the Fe-fed mice. However, the treatment did not impact blood hemoglobin level, white blood cell and platelet numbers in both normal diet and Fe diet-fed mice. Interestingly, CM1 treatment did not markedly elevate plasma aspartate aminotransferase, alanine aminotransferase and alkaline phosphatase activities in the normal diet-fed mice but it tended to increase the levels of the liver enzymes slightly in the Fe-fed mice. Hematoxylin and eosin staining result showed no abnormal pathological changes in heart, liver and spleen tissues.@*CONCLUSIONS@#It is clear that CM1 would not be toxic to bone marrow and liver cells under normal and iron-overload conditions.

3.
Asian Pacific Journal of Tropical Biomedicine ; (12): 663-668, 2014.
Article in English | WPRIM | ID: wpr-343179

ABSTRACT

<p><b>OBJECTIVE</b>To evaluate the iron-chelating properties and free-radical scavenging activities of 1-(N-acetyl-6-aminohexyl)-3-hydroxy-2-methylpyridin-4-one (CM1) treatment in chronic iron-loaded β-thalassemic (BKO) mice.</p><p><b>METHODS</b>The BKO mice were fed with a ferrocene-rich diet and were orally administered with CM1 [50 mg/(kg.day)] for 6 months. Blood levels of non-transferrin bound iron, labile plasma iron, ferritin (Ft) and malondialdehyde were determined.</p><p><b>RESULTS</b>The BKO mice were fed with an iron diet for 8 months which resulted in iron overload. Interestingly, the mice showed a decrease in the non-transferrin bound iron, labile plasma iron and malondialdehyde levels, but not the Ft levels after continuous CM1 treatment.</p><p><b>CONCLUSIONS</b>CM1 could be an effective oral iron chelator that can reduce iron overload and lipid peroxidation in chronic iron overload β-thalassemic mice.</p>

4.
Asian Pacific Journal of Tropical Biomedicine ; (12): 663-668, 2014.
Article in Chinese | WPRIM | ID: wpr-951839

ABSTRACT

Objective: To evaluate the iron-chelating properties and free-radical scavenging activities of 1-(N-acetyl-6-aminohexyl)-3-hydroxy-2-methylpyridin-4-one (CM1) treatment in chronic iron-loaded β-thalassemic (BKO) mice. Methods: The BKO mice were fed with a ferrocene-rich diet and were orally administered with CM1 [50 mg/(kg.day)] for 6 months. Blood levels of non-transferrin bound iron, labile plasma iron, ferritin (Ft) and malondialdehyde were determined. Results: The BKO mice were fed with an iron diet for 8 months which resulted in iron overload. Interestingly, the mice showed a decrease in the non-transferrin bound iron, labile plasma iron and malondialdehyde levels, but not the Ft levels after continuous CM1 treatment. Conclusions: CM1 could be an effective oral iron chelator that can reduce iron overload and lipid peroxidation in chronic iron overload β-thalassemic mice.

5.
Asian Pacific Journal of Tropical Medicine ; (12): S155-S161, 2014.
Article in Chinese | WPRIM | ID: wpr-951753

ABSTRACT

Objective: To evaluate efficacy and toxicity of a novel orally active bidentate iron chelator, 1-(N-acetyl-6-aminohexyl)-3-hydroxy-2-methylpyridin-4-one (CM1) in mice under normal and iron overload conditions. Methods: Wild type C57BL/6 mice were fed with normal and 0.2% (w/w) ferrocene-supplemented (Fe) diets, respectively for 240 d and orally given the CM1 (50, 100 and 200 mg/kg) for 180 d. Blood iron profiles, hematological indices, liver enzymes and histopathology were determined. Results: CM1 treatment lowered plasma levels of labile plasma iron and non-transferrin bound iron, but not ferritin in the Fe-fed mice. However, the treatment did not impact blood hemoglobin level, white blood cell and platelet numbers in both normal diet and Fe diet-fed mice. Interestingly, CM1 treatment did not markedly elevate plasma aspartate aminotransferase, alanine aminotransferase and alkaline phosphatase activities in the normal diet-fed mice but it tended to increase the levels of the liver enzymes slightly in the Fe-fed mice. Hematoxylin and eosin staining result showed no abnormal pathological changes in heart, liver and spleen tissues. Conclusions: It is clear that CM1 would not be toxic to bone marrow and liver cells under normal and iron-overload conditions.

SELECTION OF CITATIONS
SEARCH DETAIL